根据经纬度计算地球上两点之间的距离js实现代码

  利用JS实现的根据经纬度计算地球上两点之间的距离

  最近用到了根据经纬度计算地球表面两点间距离的公式,然后就用JS实现了一下。

  计算地球表面两点间的距离大概有两种办法。

  第一种是默认地球是一个光滑的球面,然后计算任意两点间的距离,这个距离叫做大圆距离(The Great Circle Distance)。

  公式如下:

  使用JS来实现为:

  

复制代码 代码如下:

  var EARTH_RADIUS = 6378137.0; //单位M

  var PI = Math.PI;

  function getRad(d){

  return d*PI/180.0;

  }

  /**

  * caculate the great circle distance

  * @param {Object} lat1

  * @param {Object} lng1

  * @param {Object} lat2

  * @param {Object} lng2

  */

  function getGreatCircleDistance(lat1,lng1,lat2,lng2){

  var radLat1 = getRad(lat1);

  var radLat2 = getRad(lat2);

  var a = radLat1 - radLat2;

  var b = getRad(lng1) - getRad(lng2);

  var s = 2*Math.asin(Math.sqrt(Math.pow(Math.sin(a/2),2) + Math.cos(radLat1)*Math.cos(radLat2)*Math.pow(Math.sin(b/2),2)));

  s = s*EARTH_RADIUS;

  s = Math.round(s*10000)/10000.0;

  return s;

  }

  这个公式在大多数情况下比较正确,只有在处理球面上的相对点的时候,会出现问题,有一个修正的公式,因为没有需要,就没有找出来,可以在wiki上查到。

  当然,我们都知道,地球其实并不是一个真正的圆球体,而是椭球,所以有了下面的公式:

  

复制代码 代码如下:

  /**

  * approx distance between two points on earth ellipsoid

  * @param {Object} lat1

  * @param {Object} lng1

  * @param {Object} lat2

  * @param {Object} lng2

  */

  function getFlatternDistance(lat1,lng1,lat2,lng2){

  var f = getRad((lat1 + lat2)/2);

  var g = getRad((lat1 - lat2)/2);

  var l = getRad((lng1 - lng2)/2);

  var sg = Math.sin(g);

  var sl = Math.sin(l);

  var sf = Math.sin(f);

  var s,c,w,r,d,h1,h2;

  var a = EARTH_RADIUS;

  var fl = 1/298.257;

  sg = sg*sg;

  sl = sl*sl;

  sf = sf*sf;

  s = sg*(1-sl) + (1-sf)*sl;

  c = (1-sg)*(1-sl) + sf*sl;

  w = Math.atan(Math.sqrt(s/c));

  r = Math.sqrt(s*c)/w;

  d = 2*w*a;

  h1 = (3*r -1)/2/c;

  h2 = (3*r +1)/2/s;

  return d*(1 + fl*(h1*sf*(1-sg) - h2*(1-sf)*sg));

  }

  这个公式计算出的结果要比第一个好一些,当然,最后结果的经度实际上还取决于传入的坐标的精度。